
An Investigation into the Dynamics of a Continuous Time

Recurrent Neural Network Node

Candidate No: 52804

December 7, 2006

1 Introduction

Dynamic neural networks are used widely in the field of evolutionary robotics. One form, Continu-
ous Time Recurrent Neural Networks (CTRNN) are commonly used to evolve controllers for robots
and have been used extensively at Sussex. Beer [1] states that these networks are both ”the sim-
plest non-linear, continuous dynamical neural network model” and ”they are universal dynamical
approximators”. Another advantage of a CTRNN models is that they are claimed to be a neural
model with biologically plausibility.

In this paper I will study the behaviour of a CTRNN neuron using numerical integration, dynamical
systems analysis and experimentation.

2 Definition of a CTRNN

A CTRNN is typically describe in the form of a differential equation describing how each node
responds to change. I will use the equations describing the networks found in [2] and others, as a
the basis for this report, which have following general form:

dy

dt
=

1
τi

−yi +
N∑

j=1

wjiσ(g(yj + θj))

 + Ii (1)

where yi is the state of each of each neuron, τi is its time constant, wji is the strength of the
connection from the jth to the ith neuron, g is a gain, θi is the node’s bias and Ii represents the
current external input to this node, where i varies between 1 and N . N is the number of nodes in
this network.

σ is the standard logistic activation function common to many neural networks and is defined as:

σ(x) =
1

1 + e−x
(2)

1

3 A minimal CTRNN Node

To begin the analysis of a CTRNN of this type, we will first examine the properties of a single node
without a recurrent connection, input, and with τi = 1. This simple ‘network’ is shown in Figure 1.

outputNode

Figure 1: Minimal CTRNN node

The derivative of this network now becomes:

dy

dt
=

1
1

−yi +
0∑

j=0

wjiσ(g(yj + θj))

 + 0 (3)

Simplifying (3) we get:

dy

dt
= −yi (4)

3.1 Numerical Integration of Node

Numerical integrating using Euler’s method, with an initival value of y(0) = 1, a timestep h = 0.01
and a simulation length of 5, results in Figure 2. We can see from this figure that the system shows
exponential decay towards 0 from the initial starting value. The same occurs if y(0) = −1. If the
initial value is zero then then system remains at zero for all t.

From (4) we can see that that the system has one fixed point, when dy
dt = 0, when y = 0. Pertubing

the system around this point shows that this is a stable fixed point. For example, using h = 0.1
shows the trend to decay back to 0:

y(0) = 0 + 0.01 → y(1h) = 0.009 → y(2h) = 0.008 → y(3h) = 0.007 etc.

y(0) = 0 - 0.01 → y(1h) = -0.009 → y(2h) = -0.008 → y(3h) = -0.007 etc.

∴ the node’s basic nature is to decay exponentially to zero from a given starting point.

3.2 Time Constant Effect on a CTRNN Node

The time constant of a CTRNN node, τ , is there to model its membrane resistance time. If we
change (4) to include τi, we can see how this effects the basic behaviour of the node. We now have
a node defined by:

dy

dt
=

1
τi

(−yi) (5)

2

Figure 2: Output of the CTRNN node over time for y(0) = -1 and y(0)=1

If τi < 1 then it acts as an excitatory component of the node and the initial state decays rapidly, if
τi > 1 it inhibits change in the node. This can be seen in Figure 3.

τi cannot be zero as 1/0 is undefined and we will not consider τi < 0 because it represents a time
constant and thus allowing negative times is nonsensical in the context of analysing CTRNNs.

3.2.1 Courant-Friedrichs-Lewy Condition

One thing to pay close attention to during numerical integration is that the time it takes for the
system to ‘perform’ a significant action must be larger than the time step used in the integration.
This is known as the Courant-Friedrichs-Lewy Condition [5].

If we allow τi to approach the timestep, h, so that τi <= h, we will breach this condition. Figure
(4) shows the system response when τi = h and when τi = h/2, for h = 0.05 and y(0) = 1.

When τi = h the output of the system follows the input, which in this case is zero. So the node
‘decays’ instantly. If we examine the equation used for Euler integration (6) we can see the term
(h ∗ 1

τi
) is reduced to 1, resulting in equation (7).

y(t + 1) = y(t) + (h ∗ 1
τi
∗ (−y(t)) (6)

y(t + 1) = y(t) +−y(t) (7)

3

Figure 3: Output of the CTRNN node over time for changing values of τ

Figure 4: Output of the CTRNN node over time when τi approaches h.

4

If the starting value y(0) = 1, at the first integration step, y(h) = 1−1 = 0 and the system’s output
will switch to zero and stay there.

When τi = h/2 (7) has reduced to (8) and the system now oscillates between -1 and 1 during
integration steps. Following integration we see:

y(0) = 1 → y(1h) = 1 - 2 =-1→ y(2h) = -1 + 2 = 1→ y(3h) = 1 -2 = -1 etc.

y(t + 1) = y(t) + 2(−y(t)) (8)

Therefore the time step must be kept small enough so that information has enough time to propagate
through the space discretization [5].

3.3 Adding input

Adding input to the node (Figure 5) changes the derivative for the network to (9).

dy

dt
=

1
τi

(−yi) + Ii (9)

If τi = 0, numerical integration of (9) shows that that when Ii > 0, then the output of the node
starts at y(0) and approaches the value of Ii asymptotically, approaching Ii in the τi time. When
Ii < 0 then the output of the node exponentially approaches Ii.

input Node output

Figure 5: Minimal CTRNN node with input

Changing values of τi shows similar behaviour to Section 3.2. Figure 6 shows the output of the
system when y(0) = 0, h = 0.01 and a simulation time of 5 for varying values of Ii and τi. Input,
Ii is governed by (10) and Ii = 0 when the simulation time becomes 2.

I(t) =
(

I t ≤ 2
0 else

)
(10)

Therefore we can see that a CTRNN node with no recurrent connection is exhibits growth to Ii

with a time constant τi. When input is removed, the system has a fixed point at y = 0, which it
will return to.

4 A Recurrent Connection

So far the CTRNN node under evaluation has exhibited only simple dynamics for a range of inputs
and time constants. Adding a single reccurrent connection enables the node to exhibit much more

5

Figure 6: CTRNN output with varying input and τi values

complicated behaviour. The network under evaluation in this next section is show in Figure 7.

input Node output
W11

Figure 7: Minimal CTRNN node with recurrent connection

The derivative describing the network now becomes:

dyi

dt
=

1
τi

(−yi + wiσ(g(yi + θi))) + Ii (11)

4.1 Sigmoid Activation function

Before examining the dynamics of the recurrent node, the response of the sigmoid activation function
σ(), is first considered. σ() is defined in (2).

Examining the derivative of σ, σ′ gives us further insight into its behaviour. We can rewrite (2) in
the form σ(x) = y = (1− e−x)−1. If we allow u = (1 + e−x), y becomes y = (u)−1. Calculating the
derivatives, du

dx = −e−x and dy
du = −u−2, gives:

σ′ =
dy

dx
=

dy

du
.
du

dx
= −u−2.− e−x =

e−x

(1 + e−x)2
(12)

6

Others have show that the derivative, σ′, can be written as in an alternative form as a logistic
function (13), which is quick to compute during simulation.

dσ(x)
dx

= σ(x)(1− σ(x)) (13)

Plotting the output for σ(x) (Figure 8) and the derivative, σ′(x) (Figure 9) reveals interesting
properties. The sigmoid function shows that its output will range from 0 to 1 as its input ranges
from −∞ to ∞. It can also be seen that when x > 5 or x < 5, the output of the sigmoid function
will have saturated

The graph of the derivative σ′ shows that 0 < σ′ < 0.25. It has its largest values in the activation
function’s transition range between 0 and 1 and as the connections saturate the derivative of the
sigmoid function is almost zero. This shows that any near saturated connections in the CTRNN
will reactly slowly to change.

Figure 8: The Sigmoid Activation Function

4.2 Basic Behaviour

To examine the behaviour of the network, the derivative (11) can first be simplified by setting g = 0,
τi = 1 and Ii = 0, as none effect the fundamental behaviour of the network. Investigating from
inside the sigmoid brackets outwards, we will exam the effect of bias, gain and connection weight
on the response of the system. All numerical integration results in this section are for h = 0.01 and
t = 4.

7

Figure 9: Plotting the derivative of the Sigmoid function

4.2.1 Effect of the bias term on the network

We will now add the bias term θi but fix the weight of the recurrent connection at wi = 1. For
investigation we will considered biases in the range, θi ∈ [−5, 5] from [2]. From a neural network
point of view, the bias value can be considered as a special connection from a node with a constant
non-zero activation.

dyi

dt
= −yi + σ(yi + θi) (14)

Examining (14) shows that the bias effects the response of the system and of the sigmoid function.
This can be seen in Figure 10 and in Figure 11 respectively.

The response of the system when the bias is varied is determined by the squashing of the current
state plus the bias, by the sigmoid function. From Figure 11 it can be seen that adding a bias to
the node shifts the sigmoid response in the opposite direction. A positive bias moves the transition
region to the left, a negative bias moves it to the right. The response is of the system is now centred
on −θi.

As we saw in Section 4.1, the sigmoid function is responsive when its inputs are in the transition
zone. Values outside this range tend to the weight value (in this case 1) or zero (in the case
of negative weights). By shifting the the centering of the transition zone, the sigmoid function
becomes biased, that is instead of the x > 0 → 0, now x− θi > 0 → 0.

Therefore the θ can be used to ‘tune’ the contributions of a node’s value by biasing the sigmoid’s

8

Figure 10: Changing bias and its effect on system response

Figure 11: Changing bias and its effect on the sigmoid function

9

response to input.

4.2.2 Effect of the gain term on the network

The gain term is a special parameter used to make certain neurons in a network highly sensitive to
their input. Typically, g ∈ [1, 5] and is only > 1 for neurons connected directly to sensory input or
motor output [2]. To examine the effect of the gain term on its own, we will set wi = 1 and θi = 0.

dyi

dt
= −yi + σ(g(yi)) (15)

Examining (14) shows that the gain, like bias, effects the response of the of the system and of the
sigmoid function. This can be seen in Figure 12 and Figure 13 respectively.

Figure 12: Changing gain and its effect on system response

As gain is inside the sigmoid term, it provides another way of tuning the sigmoid response for a
range of node values. When g > 0, the steeper the transition section is in the activation function
and the quicker the function saturates. If 0 < g < 1, there is a reduction of the gradient of the
transition region, increasing the range of inputs the activation function is responsive to.

If g < 0 then the response switches around, now values less than the centre of the transition region
tend to zero, and values greater than the centre point of the transition region tend to one.

For the remainder of this investigation we will take g = 1, as its a parameter present for only a few
special case input nodes.

10

Figure 13: Changing gain and its effect on the activation function

4.2.3 Effect of weight changes on the network

Now we will investigate the network behaviour for varying weight values to understand the effect of
the weight of connections. For this we will set the bias, θi = 0. The the derivative for the network
is now:

dyi

dt
= −yi + wiσ(yi) (16)

If we numerical integrate using connection weights ∈ [−5, 5] from [2] and y(0) = 0, we get output
as seen in Figure 14.

Examining (16) shows that the weight, wi, acts a multiplier for the recurrent connection. Starting
at y(0) = 0 the sigmoid function contributes 0.5 forcing change in the system (see Figure 8).

If the weight is positive, the connection reinforces the the value of yi, as the sigmoid function for
positive values tends to one. The connection will saturate when σ(x) → 1 and the change in each
timestep to u −yi + (wi ∗ 1), as yi → wi then dy

dx u 0 ∴ the system asymptopically approaches the
weight value.

The graph is asymmetric for the negative weights because of the response of the sigmoid function.
From Figure 8 we can see that negative inputs to the sigmoid function tend to zero. Therefore as
yi tries to approach wi, σ(x) → 0, reducing the contribution of the recurrent connection.

11

Figure 14: Changing weights and its effect on system response

4.2.4 A more complete model

Now we have examined the individual effects of the weight and biases, we will examine a model
with both weight, bias and input. The derivative under test now looks like:

dyi

dt
= −yi + wiσ(yi + θi) + Ii (17)

Numerically integrating with wi ∈ [−5, 5] and θi ∈ [−5, 5] with Ii following (10), gives the results
in Figure 15.

By examining the phase portraits of yi we can see the system’s trends when moving around wi ∈
[−5 : 5] and θi ∈ [−5 : 5] show in Figure 16. These are direction fields for the extremes of the
allowed values of wi and θi. When the bias is in its negative range, it shifts the sigmoid to centre
on the bias so values below this tend to zero. When the weight is positive, the trend of the system
is to try and approach wi.

4.3 Analysis of Single CTRNN as a dynamical System

Returning to (18) we can view this equation as:

f(y;wi, θi, Ii) =
dyi

dt
= −yi + wiσ(yi + θi) + Ii (18)

12

Figure 15: Changing wi, θi and their effect on system response

dyi

dt
= 0 (19)

∴ f(y;wi, θi, Ii) = 0 (20)
−yi + wiσ(yi + θi) + Ii = 0 (21)

To analyse the fixed points of this system we would like to solve (21) which can be rewritten as
(23). Unfortunately there is no algebraic solution for (23) [1].

However, we can numerical compute the fix points and analyse their stabilitys by examining the
value and sign of derivative f ′ given in (22).

f ′ =
∂f

∂y
= −1 + wiσ

′(y + θ) (22)

Ii = yi − wiσ(yi + θi) (23)

Dynamical systems analysis [3] states if a0 is a fixed point, then if f ′(a0) < 0 then a0 is a maxima
and f ′(a0) > 0 the point is a minima. The stability of the fixed point is given by the sign of the
derivative. If |f ′(a0)| > 1 then the point is unstable and if |f ′(a0)| < 1 the point is stable.

Recalling that 0 ≤ σ′ ≤ 1/4, Beer states that:

13

0 0.5 1 1.5 2 2.5
!5

!4

!3

!2

!1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5
!6

!4

!2

0

2

4

6

!0.5 0 0.5 1 1.5 2 2.5
!5

!4

!3

!2

!1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5
!5

!4

!3

!2

!1

0

1

2

3

4

5

Figure 16: Direction Fields for [wi = 5, θi = −5], [wi = 5, θi = 5], [wi = −5, θi = 5] and
[wi = −5, θi = −5]

14

f ′ < 0 when w < 4 and thus only stable equilibria are possible in this case. On the
other hand, when w > 4, the sign of f ′ depends on y, w and θ. [1]

and we will get marked behaviour differences when wi passes through 4.

Following Beer’s lead, we use (23) to numerically compute the fixed points for θ ∈ [−5, 5] using an
extended weight range of wi ∈ [−20 : 20] to amplify the difference, although the same effects are
observed in the typical weight range used in this study. Note that we follow Beer’s convention of
placing I on the x-axis and y on the y axis.

Figure 17 shows that for wi = −20 there is only one equilibrium point for all I, when I = −10.
This can be verified by substituting the values in (21):

[y = 0, wi = −20, θ = 0, I = −10] ⇒ 0 + (−20 ∗ σ(0))− 10 = (−20 ∗ 0.5)− 10 = 0 (24)

The absolute value of the derivative, |f ′(0)| = −6, therefore the point is unstable. Perturbing
around the fixed point confirms it is unstable, using h = 0.1 shows the trend to move away from
the fixed point:

y(0) = 0 + 0.010 → y(1h) = -0.196 → y(2h) = -0.379 → y(3h) = -0.557 etc.

y(0) = 0 - 0.010 → y(1h) = -0.209 → y(2h) = -0.397 → y(3h) = -0.573 etc.

This conflicts with Beer’s statement that only stable equilibrium points are present when wi < 4.
Beer seems to have overlooked that if wi < 0 then |f ′| ≥ 1 because any negative weight will add
on to the -1 in the derivative, -1 + (-weight * sigmoid(y)), so when wi < 0 the fixed point will be
unstable. ∴ there is only a fixed single stable point when 0 < wi < 4.

Plotting y against f ′, Figure 18, shows the effects of weight on the value |f ′|, demonstrating that
only when 0 < w < 4, will we have a single stable equilibria, ie |f ′| < 1. If w < 0 then we will have
a single unstable point. When w > 4, the plots follow that of w = 20 in Figure 17.

When wi = 20, |f ′| changes from < 1 to > 1 and back to < 1, as we progress along the plot.
From visual inspection it can be seen that there are three equilibria points when y = −10, 0, 10 and
I = −10. It can also be seen that the the first equilibrium is stable, the second is unstable and the
final one is stable.

The stability of the equilibria can be confirmed by numeric analysis. Examining f ′, we see that
|f ′(−10)| = 0.999 which is < 1 so its stable, |f ′(0)| = 4 which is > 1 so its unstable and |f ′(10)| =
0.999 so its stable.

Finally we will plot the surface of the equilibrium points as wi varies, which shows a fold as wi

passes 4. As Beers notes:

Whenever the values of I or w cross into or out of this fold [the system] undergoes a
bifurcation, that is, its dynamical behaviour switches between two qualitively different
phase portraits .

these phase portraits can be seen as switching between having three fixed points to having just one
and vice versa. Figure 19 shows the output for f(y, wi, θi).

15

Figure 17: I plotted against y for wi = −20 and w = 20

Figure 18: Plotting f ′ for varying values of wi and θ = 0. f ′ is shown on the right. |f ′| on the
left.

!1000
!500

0
500

1000

!20
!10

0
10

20
!20

!10

0

10

20

Figure 19: Changing weights and bias and their effect on system response

16

References

[1] Beer, R.D. (1995). On the Dynamics of Small Continuous-Time Recurrent Neural Networks.
Adaptive Behavior, 3(4), (pp469-509).

[2] Beer, R.D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive
behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack and S. Wilson (Eds.), From animals
to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior (pp. 421-429). MIT Press.

[3] Hale, J. and Kocak, H. Dynamics and Bifurcations. Springer-Verlag, 1991.

[4] Mathayomchan, B. and Beer, R.D. (2002). Center-crossing recurrent neural networks for the
evolution of rhythmic behavior. Neural Computation 14, (pp 2043-2051).

[5] Weisstein, Eric W. ”Courant-Friedrichs-Lewy Condition.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Courant-Friedrichs-LewyCondition.html

17

4.4 Appendix

The following code was used in each section:

3.1 Numerical Integration of a Node

%% Use initial value of x=1 and x=-1

%% h is the time step for integration

%% t is the length of simulation

function SimpleNode (h, t)

NumTimeSteps = t/h;

x = 1;

SimulateNode(x, 1, h, t);

hold on;

x = -1;

SimulateNode(x, 1, h, t);

hold off;

end

%% Use euler to integrate

%% x is the initial value

%% tau is the time constant

%% h is the step size for integration

%% t is the simulation length

function SimulateNode (x, tau, h, t)

NumTimeSteps = t/h;

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

tau_value = 1/tau;

for TStep = 1:NumTimeSteps

newx = oldx + (h * (tau_value * -oldx));

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

max(X);

str = sprintf(’;x= %g;’,x);

xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

end

18

3.2 Effect of Tau on the Node

%% Minimal CTRNN - investigates the effect of tau on the system

%% x is the initial value of x

%% h is the time step for integration

%% t is the length of simulation

function MinimalCTRNN (x, h, t)

NumTimeSteps = t/h;

for tau = 0.2:0.2:2.0

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

tau_value = 1/tau;

for TStep = 1:NumTimeSteps

newx = oldx + (h * (tau_value * -oldx));

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

max(X);

str = sprintf(’;T_i= %g;’, tau);

xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

end

hold off;

end

3.2.1 Time Constant Effect on a CTRNN Node

%% Measures the effect of t -> h

%% h is the time step for integration

%% t is the length of simulation

function MinimalCTRNN2 (x, h, t)

NumTimeSteps = t/h;

tau = h/2;

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

tau_value = 1/tau;

for TStep = 1:NumTimeSteps

newx = oldx + (h * (tau_value * -oldx));

19

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

max(X);

str = sprintf(’;T_i= %g;’, tau);

xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

tau = h;

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

tau_value = 1/tau;

for TStep = 1:NumTimeSteps

newx = oldx + (h * (tau_value * -oldx));

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

max(X);

str = sprintf(’;T_i= %g;’, tau);

xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

hold off;

end

3.3 Adding Input

%% Minimal CTRNN3

%% Shows the effect of varying Tau and input for a CTRNN Node

%% h is the time step for integration

%% t is the length of simulation

function MinimalCTRNN3 (x, h, t)

NumTimeSteps = t/h; % Num of integration steps

HalfTimeStep = 2/h % halfway point

tau = [0.5, 1, 2];

I = [-4, 4];

t = 0:NumTimeSteps;

20

for i=1:3

for j=1:2

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

tau_value = 1 / tau(i);

for TStep = 1:NumTimeSteps

if (TStep < HalfTimeStep)

delta_x = tau_value * (-oldx + I(j));

else

delta_x = tau_value * (-oldx); %% I == 0

end

newx = oldx + (h * delta_x);

X(TStep+1) = newx;

oldx = newx;

end

% Now display

str = sprintf(’;I= %g, T=%g;’, I(j), tau(i))

%xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

end

end

hold off;

end

4.1 Sigmoid Activation Function

Used Sigmoid Plot with bias = 0, and gain =1

% Standard logistic activation function

function s = Sigmoid (x)

s = 1;

s = s / (1 + exp(-x));

end

%% Plots the response of the Sigmoid function

%% b is the bias

%% g is the gain

function SigmoidPlot (b, g)

X = -10:0.1:10;

dim = size(X);

length = dim(1,2);

S = zeros(1, length);

% Calculate Sigmoid

21

for i=1:length

S(i) = Sigmoid(g * (X(i) + b));

end

str = sprintf(’;g=%g b=%g;’, g, b);

plot(X, S, str);

end

% Standard logistic activation function

% Sigmoid

function s = SigmoidDerivative (x)

s = exp(-x);

d = (1 + exp(-x)) ^ 2;

s = s / d;

end

%% Plots the response of the derivative of the

%% Sigmoid function

%% b is the bias

%% g is the gain

function SigmoidDerivativePlot (b, g)

X = -10:0.1:10;

dim = size(X);

length = dim(1,2);

% Calculate change in sigmoid

dS = zeros(1, length);

%% Plot derivative

%hold on;

for i=1:length

dS(i) = SigmoidDerivative(g * (X(i) + b));

end

plot (X, dS);

end

4.2.1 Effect of bias on System

Used SigmoidPlot to show effect of bias on Sigmoid Function.

%% Single recurrent CTRNN node with Bias

%% x is the initial value of the node

%% h is the time step for integration

%% t is the length of simulation

function BiasNode (x, h, t)

NumTimeSteps = t/h; % Num of integration steps

tau = 1;

for theta = -4:2:4

X = zeros(1, NumTimeSteps);

22

oldx = x;

X(1) = oldx;

I = 0; %% no input

w = 1; %% connection is on but no multiplier

for TStep = 1:NumTimeSteps

delta_x = -oldx + (w * Sigmoid(oldx + theta)) + I;

newx = oldx + (h * delta_x);

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

str = sprintf(’;Theta= %g;’, theta);

%xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

end

hold off;

end

4.2.2 Effect of gain on system

Used SigmoidPlot to show effect of gain on Sigmoid Function.

%% Single recurrent CTRNN node with Gain

%% x is the initial value of the node

%% h is the time step for integration

%% t is the length of simulation

function GainNode (x, h, t)

NumTimeSteps = t/h; % Num of integration steps

tau = 1;

for g = -5:5

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

I = 0; %% no input

w = 1; %% connection is on but no multiplier

theta = 1;

for TStep = 1:NumTimeSteps

delta_x = -oldx + (w * Sigmoid(g*(oldx + theta))) + I;

newx = oldx + (h * delta_x);

X(TStep+1) = newx;

23

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

str = sprintf(’;g= %g;’, g);

%xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

hold on;

end

hold off;

end

4.2.3Effect of weight changes on the network

4.2.4 A more complete model

%% Minimal CTRNN node with recurrent connection

%% x is the initial value

%% h is the time step for integration

%% t is the length of simulation

function RecurrentNode (x, h, t)

NumTimeSteps = t/h; % Num of integration steps

tau = 1;

for w = -4:2:4

X = zeros(1, NumTimeSteps);

oldx = x;

X(1) = oldx;

I = 0; % No input

theta = 0; % No bias

for TStep = 1:NumTimeSteps

delta_x = -oldx + (w * Sigmoid(oldx + theta)) + I;

newx = oldx + (h * delta_x);

X(TStep+1) = newx;

oldx = newx;

end

% Now display

t = 0:NumTimeSteps;

str = sprintf(’;W= %g;’, w);

%xlabel(’time’), ylabel(’output’), title(’output vs time’);

plot(t, X, str);

24

hold on;

end

hold off;

end

%% Shows phase portrait for a given weight and bias

function FullNodePhase (w, bias)

[T, X] = meshgrid([0:0.1:2], [-5:0.5:5]);

dT = ones(size(T));

%dX = -X + (w * ((1-exp(-X)).^-1));

dX = -X + (w * ((1 + exp(-(X + bias))).^(-1)));

quiver(T,X,dT,dX)

end

4.3 Analysis of Single CTRNN as a dynamical System

% Plots the equilibria for % I = y - w * sigma (y + bias)

% w is the weight of the connection

% b is the bias

function PlotEquilibria (w, b)

% I = y - w * sigma (y + bias)

Y=-20:0.1:20;

% plot for weight and bias

str = sprintf(’;b=%g;’, b);

xlabel("I");

ylabel("y");

plot (Y - (w *((1 + exp(-(Y + b))).^(-1))), Y, str);

end

% Plots the equilibrium as a function of I

% Will plot for a bias = -5, 0 and 5

% W is the weight of the connection

function PlotEquilibriaRange (w)

% I = y - w * sigma (y + bias)

Y=-20:0.1:20;

% plot for bias = -5

b = -5;

PlotEquilibria(w, -5);

hold on

% plot for bias = -0

PlotEquilibria(w, 0);

25

% plot for bias = 5

PlotEquilibria(w, 5);

hold off

end

% Plots the equilibrium as a function of I

% where b is the bias

% and w is the weight of the connection

function PlotEquilibria2 (w, bias)

% I = y - w * sigma (y + bias)

% y = f(x)

X=-20:0.1:20;

% plot for bias

str = sprintf(’;w=%g, b=%g;’, w, bias);

plot (X, X - (w *((1 + exp(-(X + bias))).^(-1))), str)

hold on

% I = y

plot(X, X);

hold off

end

function WeightMesh

% I = y - w * sigma (y + bias)

[y, w] = meshgrid(-20:20, -20:20);

%i = y - (w *((exp(-y) * (((1 + exp(-(y))).^(-1))^2))));

i = y - (w * ((1 + exp(-(y + 0))).^(-1)));

xlabel(’i’);

ylabel(’w’);

mesh(i, w, y);

end

26

